Geometría (230). Cateto

Comment

Geometría (230). Cateto

Foto: Cristina Martínez García.

Para empezar bien el año 2021 propongo un ejercicio fácil. Se puede plantear a los alumnos más jóvenes, quizás desde 2º de ESO.
Puede venir bien para recordar algunas propiedades de los triángulos rectángulos, entre ellas las referentes a las circunferencias inscrita y circunscrita a ellos.

Problema
El triángulo ABC es rectángulo en A. Si el radio de su circunferencia inscrita mide 5 cm y el cateto AC mide 20 cm:
a) ¿cuánto mide el otro cateto?
b) ¿cuánto mide el radio de la circunferencia circunscrita a ese triángulo?

FigB230.jpg

Comment

Navidad 2020

Comment

Navidad 2020

Durante la larga cuarentena de este año

he repetido en muchos posts la frase:

“en tiempos de coronavirus no estás solo”.

En estos días, con más razón:

“en tiempos de Navidad nadie debe estar solo”.

Acude al Belén, que allí nos encontraremos.

 Feliz Navidad.

José María

Comment

Geometría (229). Paradoja

Comment

Geometría (229). Paradoja

Foto: Carmen Martínez García (Tenerife)

En este post propongo una conocida paradoja geométrica. Si se observan las dos figuras de abajo  surge una contradicción visual. Al recolocar las piezas, en la segunda figura sobra un cuadro. Naturalmente, la vista nos engaña.

Problema
Si se recolocan las cuatro piezas coloreadas parece que se gana (¿o pierde?) un cuadro.
Da una explicación matemática de esta paradoja.

Fig B229.jpg

Comment

Geometría (228). Estrella

Comment

Geometría (228). Estrella

Foto: José María Martínez García, St. Paul, Minesota

El problema que se propone a continuación no es difícil, pero puede resultar engorroso. Puede hacerse de varias maneras. Para obtener los datos necesarios hay que saber hallar los ángulos de un polígono regular; también se necesita aplicar Pitágoras en diferentes ocasiones. Por último, no viene mal saber algo de trigonometría.
Podría plantearse a los alumnos de bachillerato.

Problema
Para la decoración navideña un ayuntamiento desea colocar estrellas luminosas como la que se muestra en la figura. Estas estrellas están inscritas en un dodecágono regular de 1 metro de lado, y sus lados son simétricos 3 a 3 de los lados del dodecágono usando como ejes de simetría los lados del cuadrado punteado. ¿Cuál es la superficie de la estrella?

Fig B228.jpg

Comment

Geometría (227). Trapecio

Comment

Geometría (227). Trapecio

Foto: Carmen García Matas. (Tenerife)

El problema que se plantea a continuación no es difícil, pero hay que “verlo”. Hay que salir del trapecio y descubrir otra cosa. Sirva de pista que en algún momento hay que aplicar Tales.
Podría plantearse a los alumnos aficionados a la Geometría, desde 3º de ESO en adelante.

Problema
En el trapecio ABCD la suma de los ángulos de la base es igual a 90º. Demuestra que el segmento que une los puntos medios de las bases es igual a la mitad de la diferencia de las longitudes de esas bases.

Fig B227.jpg

Comment

Geometría (226). Diagonal "aúrea"

Comment

Geometría (226). Diagonal "aúrea"

Dibujo: Antonio Martínez García

El problema que sigue requiere conocer el significado del coseno de un ángulo. También hay que saber encontrar triángulos semejantes y aplicar Tales.
Podría plantearse a los alumnos de 4º de ESO en adelante.

Problema
Demuestra que la diagonal de un pentágono regular de lado 1 vale el número áureo. Con ese dato, halla el valor del coseno del ángulo sombreado.

Fig B226.jpg

Comment

Geometría (225). Áreas de triángulos

Comment

Geometría (225). Áreas de triángulos

Foto: Cristina Martínez García (Tenerife)

El problema que sigue es bastante sencillo. Puede proponerse a los alumnos de Secundaria de cualquier nivel. Hay que conocer los teoremas de Tales y de Pitágoras; y la fórmula del área de un triángulo.

Problema
Los triángulos ABC y ABD, representados en la figura, son rectángulos en A y D, respectivamente. Si se conocen las medidas de los lados AC = 15 cm, AD = 16 cm y DB = 12 cm, ¿cuánto valdrá el área de cada uno de los 5 triángulos dibujados?

Fig B225.jpg

Comment

Geometría (224). Tales + Pitágoras

Comment

Geometría (224). Tales + Pitágoras

Foto: Catalina Martínez García, Salamanca

Problema propuesto en XXIII CONCURSO DE PRIMAVERA DE MATEMÉTICAS (1ª Fase, Nivel IV, Bachillerato).
https://www.concursoprimavera.es/resources/downloads/cwVYVKfesZ8nUrKH/problemas-2019-fase1-nivel4.pdf

Es un problema sencillo. Puede proponerse a los alumnos de Secundaria de cualquier curso. Hay que conocer los teoremas de Tales y de Pitágoras; aunque podría hacerse aplicando solo Tales.

Problema
En el interior de un triángulo ABC de catetos 3 y 4 se elige un punto D que dista 1 de cada uno de los catetos. Por D se trazan paralelas a los tres lados que cortan a los lados en los puntos señalados en la figura. ¿Cuánto vale la suma de los segmentos PQ + RS?

Fig B224.jpg


Comment